WISA-Workshop on International Sediment Advances, 13th ISRS, Stuttgart, 20th September 2016

HYDRAULIC, MORPHOLOGICAL AND BIOLOGICAL INTERACTIONS IN SEDIMENT MANAGEMENT

PRESENTATION

by G. DI SILVIO (WASER)

PURPOSES AND SCOPES OF WISA

- Informing on the novelties of a few major Organizations active in sediment research.
- Debating a particular issue of tropical interest, from the viewpoint of each Organization.

ORGANIZATIONS REPRESENTED IN THE PRESENT WISA

WASER, World Association for Sedimentation and Erosion Research

IAHR, International Association for Hydro-Environmental Engineering (Fluvial Hydraulics & Coastal Hydraulics Commitees)

IAHS, International Association of Hydrological Sciences (International Commission on Continental Erosion)

CONSOWA, World Conference on Soil and Water Conservation (ISCO, WASWAC, ESSC, IUSS, SWCS, IECA...)

UNESCO - ISI, International Sedimentation Initiative (Group of experts)

LOC-13th ISRS, Stuttgart, Germany (German Scientific Community)

Other Organizations represented in the past WISA's

ICOLD, International Commission on Large Dams (Technical Committee on Sedimentation)

LOC-12th ISRS, Kyoto, Japan (Japanese Scientific Community)

TOPICAL ISSUES OF PAST AND POSSIBLE FUTURE WISA'S

- IMPACT OF DAMS ON RIVERS AND SEDIMENT MANAGEMENT 12th ISRS, Kyoto, Japan, Sept 3, 2013
- HYDRAULIC, MORPHOLOGICAL AND BIOLOGICAL INTERACTION IN SEDIMENT MANAGEMENT – 13th ISRS, Stuttgart, Germany, Sept 20, 2016
- HYDROLOGICAL, HYSTORICAL AND GEOLOGICAL TIME-SCALES OF SEDIMENTARY SYSTEMS
- ANTROPIZATION AND RE-NATURALIZATION OF SEDIMENTARY SYSTEMS
- REDUCTIONIST AND HOLISTIC APPROACHES IN SEDIMENTARY-SYSTEM ANALYSIS

.

WISA - Workshop on International Sediment Advances, - Stuttgart, 20th September 2016

Workshop on the International Sediment Advancements (WISA) Hydraulic, Morphological and Biological Interactions in Sediment Management

Chair: Giampaolo di Silvio

- 13:15 13:20 Introduction Giampaolo Di Silvio, WASER
- **13:20 13:45** Eco-sedimentology. A new area in sediment studies Zhaoyin Wang, IAHR
- **13:45 14:10** Changing perspectives on the suspended sediment load of rivers Desmond Walling, IAHS
- 14:10 14:35 Hydrological processes in soils of sloping lands as a basis for sediment production and sediment yield Ildefonso Pla Sentis, CONSOWA
- 14:35 15:00 Developments in Reservoir Sediment Management Rollin Hotchkiss, UNESCO-ISI
- **15:00 15:30** COFFEE BREAK

Chair: Rollin Hotchkiss

- **15:30 15:55** Influence of morphological changes on ecology: a cascade of scales Silke Wieprecht, LOC
- **15:55 16:20** A hydro-, morpho-, bio-dynamic model for long-term, basin-scale river simulations Giampaolo Di Silvio, WASER
- 16:20 17:00 PLENARY DISCUSSION

WISA-Workshop on International Sediment Advances, 20th September 2016

HYDRAULIC, MORPHOLOGICAL AND BIOLOGICAL INTERACTIONS IN SEDIMENT MANAGEMENT

A HYDRO-, MORPHO-, BIO-DYNAMIC MODEL FOR LONG-TERM, BASIN-SCALE RIVER SIMULATIONS

by G. DI SILVIO (WASER)

CHANGES IN RIVER ENGINEERING

RIVER CONTROL & WATER RESOURCES UTILIZATION hydraulics and hydraulic structures RIVER & WATERSHED MANAGEMENT

+ hydrology + statistics RIVER & WATERSHED RESTORATION

+ geomorphology + biology

WATER, SEDIMENTS & VEGETATION

HYDRO-, MORPHO-, BIO-DYNAMIC PROCESSES

EQUATIONS (in general p.d.e.) Mass & Momentum conservation: (Naver-Stokes equations, more or less simplified) Mass & Momentum conservation: (Sediment transport eqs.) Mass & Energy conservation: (Biodynamic eqs.)

INTERACTIONS

ABSOLUTE SPACE- & TIME-SCALES

River-related Sciences & Applications

10

RELATIVE SPACE- & TIME-SCALES

(Sub-)System Size (space) & Response (time)

11

EVOLUTION OF FLUVIAL (SUB-)SYSTEMS Dominant Process and Significant Size

- **RIVER WATERSHED** ~L² Fluvial system (tributaries and hydrographic network) configuration
- RIVER REACH ~L Bottom profile and grain size distribution
- RIVER WIDTH ~W Mesoforms (bars, braiding, meanders, ...)
- **RIVER DEPTH** ~H, **BOUNDARY LAYER** ~ δ , **GRAIN SIZE ~D** Bed forms (ripples and dunes); flow resistance and sediment transport

The significant size of a fluvial (sub-)system, equally applies to hydraulic, morphological and biological processes.

- δ, D benthos, biofilm development;
 H individual plant species e.g.

 - W animal species, riparian vegetation;
 - eco-coenoses of the fluvial corridor.

MODELLING HYDRO-, MORPHO-, BIO-DYNAMIC INTERACTIONS AT ALL SCALES (10⁻²÷10⁷ m)

- Impossible: for practical (CPU) and theoretical (deterministic approach) reasons
- Unnecessary: only the processes having very similar space- and time scales need to be "mathematically coupled" (stricly interacting)

A QUASI 3-D RIVER MODEL ⁽¹⁾⁽²⁾

⁽¹⁾ Di Silvio & Nones, *ISRS 2010*, Stellenbosch

COMPONENTS OF THE 2-D CROSS-SECTION MODEL

=Hydrology

FLOW DURATION CURVE $Q(t/\tau)$ 3 parameters (Qmax, Qave, Qmin) $\leftarrow - \{CLIMATE\}$

Greiner

PROFILE OF "NUDE" CROSS-SECTION B = $\alpha Q (t/\tau)^{\beta}$ 2 parameters $(\alpha, \beta) = f[Q_{ed}(\tau), slope] \leftarrow \{1-D(L.U.F.) MODEL\}$

Biology

DISTRIBUTION OF VEGETATION DENSITY* $K = (dBveg/dBtot) = \prod_i K_i [Q(t/\tau)]$ Productory of i = 1, 2, ..., N«limiting factors» K_i (BIO-CLIMATE, DROWNING, ANOXIA, EXTIRPATION, BRAIDING etc.)

2-D CROSS-SECTION MODEL HYDRO-, MORPHO-, BIO-DYNAMIC INTERACTIONS

MEASURED AND COMPUTED VALUES OF VEGETATION DENSITY⁽¹⁾

RESULTS IN SOME CROSS-SECTIONS OF LARGE RIVERS

- The seasonal effects of hydrology and morphology are reflected by the <u>curve profile f(t/τ)</u>.
- The effects of the constant climate (annual temperature and precipitation) are reflected by the <u>curve averaged position</u>.

N.B. The tendency to compensation of the various K_i (t/ τ), is probabily due to the different adaptation of individual species.

VEGETATION MODEL VERIFICATION⁽¹⁾

OVERALL RESULTS

 The graph does not distinguish between the <u>seasonal effects</u> f(t/τ) of hydrology and morphology, and the <u>annually averaged</u> <u>effects</u> of the constant climate.

EFFECTS OF EXTERNAL FORCING PERTURBATIONS

EXPECTED CHANGES OF RIVER LANDSCAPE

- Lower annual rainfall and/or temperature
- Larger equivalent discharge and/or lesser sediment input

Braiding configuration; large total water width; shallow and wide wandering channels; sparse and temporary riparian vegetation; no permanent planitial vegetation; humid zones; transversal gradients

Sediment interception

- Higher annual rainfall and/or temperature
- Small equivalent discharge and/or larger sediment input

Meandering or straight onechannel configuration; deep and narrow stable channel; smaller total water width; no active secondary channels; no riparian and planitial vegetation; persistent humid zones; no transversal fluxes; «plastered» river

BUT WHEN AND WHERE?

APPLICATIONS OF THE QUASI 3-D MODEL

Long-term prediction of the longitudinal and trasversal evolution of large rivers in time and space, consequent to complex anthropogenic impact and/or climatic changes, requires the application of the **complete hydro-, morpho-, bio-dynamic model**. A few examples:

- **A ZAMBEZI RIVER** (Africa): MORPHODYNAMIC IMPACT OF LARGE IMPOUNDMENTS; Nones and Di Silvio, Int. J. of River Basin Management, 2013.
- **BADIGE RIVER** (Italy): MULTIPLE ANTHROPOGENIC IMPACT AND MORPHOLOGICAL RECOVERY; Assessment of a re-naturalization project, Internal report, 2009.
- **C PARANA' RIVER** (South America): MORPHODYNAMIC IMPACT OF CLIMATE CHANGE; Guerrero et al., IJRE 2013.

WISA-Workshop on International Sediment Advances, 20th September 2016

HYDRAULIC, MORPHOLOGICAL AND BIOLOGICAL INTERACTIONS IN SEDIMENT MANAGEMENT

EXAMPLES OF APPLICATION OF THE HYDRO-, MORPHO-, BIO-DYNAMIC MODEL

by G. DI SILVIO (WASER)

APPLICATIONS OF THE QUASI 3-D MODEL

Long-term prediction of the longitudinal and trasversal evolution of large rivers in time and space, consequent to complex anthropogenic impact and/or climatic changes, requires the application of the **complete hydro-, morpho-, bio-dynamic model**. A few examples:

- **A ZAMBEZI RIVER** (Africa): MORPHODYNAMIC IMPACT OF LARGE IMPOUNDMENTS; Nones and Di Silvio, Int. J. of River Basin Management, 2013.
- **BADIGE RIVER** (Italy): MULTIPLE ANTHROPOGENIC IMPACT AND MORPHOLOGICAL RECOVERY; Assessment of a re-naturalization project, Internal report, 2009.
- **C PARANA' RIVER** (South America): MORPHODYNAMIC IMPACT OF CLIMATE CHANGE; Guerrero et al., IJRE 2013.

A

LOWER ZAMBEZI RIVER^(1,2)

(1) Ronco et al, "Morphological effects of damming on Lower Zambezi River», Geomorphology 2010
(2) Nones et al, "Modelling the impact of large impoudments on the Lower Zambezi", JRBM 2012

LOWER ZAMBEZI: LONGITUDINAL EVOLUTION

LOWER ZAMBEZI: DELTA EVOLUTION

LOWER ZAMBEZI: PLANIMETRIC EVOLUTION

 \rightarrow less braiding less depht; thicker vegetation, \rightarrow plastering

THE ADIGE RIVER^(1,2)

ADIGE RIVER: LONG-TERM EVOLUTION UP TO THE '50s

Over-aggraded river bed downstream Verona

Albaredo d'Adige (Vr)

ADIGE RIVER: RECENT EVOLUTION AFTER THE '50s

PROFILE EVOLUTION

ADIGE RIVER: DELTA SURFACE DECREASE AFTER THE '50s

ADIGE RIVER: RECENT CHANGES OF WATERFLOW & SEDIMENT TRANSPORT

Reduction of Q_{max} Reduction of Q_{eq} Different reduction of G_S

ADIGE RIVER: PLAUSIBLE CAUSES OF CHANGES

- 1) Reduction of "equivalent" discharge, after the 1930s (hydropower regulation)
- 2) Water withdrawal, after the 1940s (irrigation)
- 3) Sediment interception by reservoirs, after the 1930s, mainly upland (31 reservoirs, 570.10⁶ m³)
- 4) Less sediment production from watershed slope, after the 1950s (erosion-control works)
- 5) Quarrying of gravel and sand, from the 1950s to the 1970s

RIVER EVOLUTION 1954-1966

ADIGE RIVER: TWO RESTORATION PROJECTS DOWNSTREAM FROM VERONA

ANTHROPOGENIC EVOLUTION OF A PIEDMONT RIVER AND RESTORATION PROJECTS

PRISTINE CONDITIONS

Braiding configuration; large total width; shallow and wide wandering channels; sparse riparian vegetation

Reduction of Q_{eq}

(2)

PRESENT CONDITIONS

Deeper and narrower main channel; obliterated secondary channels; sedimentation of islands and food-plains; permanent (riparian and plantial) vegetation; no humid zones

RESTORED CONDITIONS

Widening of channels; lowering of island elevation; restoration of humid zones; reopening of secondary channels CAVEAT: Tendency to reverting to the previous conditions

QUASI 3-D MODEL APPLIED FOR DESIGN AND MAINTENANCE

PARANÁ RIVER

MIDDLE AND LOW PARANÁ (QUASI 3-D MODEL⁽¹⁾)

PARANÁ WATERSHED

DETAILED INVESTIGATED REACH (2-D MODEL⁽²⁾)

PARANÁ RIVER: RECENT CLIMATIC CYCLES

PARANÁ RIVER: HYDRO-MORPHOLOGICAL RESPONSE TO CLIMATIC CYCLES

Period	1900-1930		1930-1970		1970-2005	
	HUMID		DRY		HUMID	
Reach	MIDDLE	LOW	MIDDLE	LOW	MIDDLE	LOW
Volume	+	+	-	-	+	+
Width	+	+	-	-	+	(-)
Depth	-	-	+	(-)	(+)	(+)

+, - balance of Lane (change of Q_{eq})
 (+), (-) quasi 3-D model (plus delay, delta, dam etc.)